solution was cooled to -78 °C with magentic stirring, and a solution of Mg(CH₂CMe₃)₂·dioxane (0.048 g, 0.190 mmol) in 5 mL of ether was added slowly. The color of the solution changed from pink to yellowbrown. It was slowly warmed to room temperature and filtered and solvent removed from the filtrate in vacuo. The residue was recrystallized from toluene/pentane at 30 °C: yield 0.047 g (69%) yellow crystals; IR (Nujol mull) ν_{Os-N} 1110 cm⁻¹; ¹H NMR (C₆H₆, 200 MHz, 297 K) 3.456 (s, 2 H, CH₂CMe₃), 2.389 (m, 2 H, NCH₂CH₂CH₂CH₂), 1.637 (s, 9 H, CMe₃), 0.977 (m), 0.779 ppm (m, 7 H, NCH₂CH₂CH₂CH₃); ¹³C NMR (C_6D_6) 58.45 (t, NCH₂CH₂CH₃), 53.359 (t, J_{CH} = 116 Hz), CH₂CM₃), 35.0 (s, CH₂CMe₃), 34.846 (q, J_{CH} = 123 Hz, CMe₃), 23.777 (t, NCH₂CH₂CH₃), 19.663 (t, NCH₂CH₂CH₂CH₃), 13.590 (q, NCH2CH2CH2CH3).

Preparation of [NOsMe4][NBu4]. [NOs(OSiMe3)4][NBu4] (0.564 g, 0.702 mmol) was dissolved in 20 mL of toluene. A toluene solution of AlMe₃ (2.40 mmol) was added slowly with magnetic stirring at 25 °C. The color of the solution changed from pink to yellow-brown, and a brown oil precipitated. Solvent was removed in vacuo, and the residual oil was extracted with several portions of diethyl ether. The yellow extract was filtered through diatomaceous earth. Pentane was added and the solution cooled to -30 °C. Yellow crystals were collected by filtration: yield of [NOsMe₄][NBu₄] 0.246 g (69%); IR (Nujol mull) ν_{Os-N} 1105 cm⁻¹; ¹H NMR (C₆D₆, 200 MHz, 297 K) 2.62 (m, 2 H, NCH₃), 2.085 (s, 3 H, OsCH₃), 1.18 (m, 4 H, NCH₂CH₂CH₂CH₃), 0.89 ppm (t, 3 H, NCH₂CH₂CH₂CH₃); ¹³C NMR (C_6D_6) 58.82 (NCH₂), 24.16 (OsMe), 24.13 (NCH₂CH₂CH₂CH₃), 20.02 (NCH₂CH₂CH₂CH₃), 13.84 ppm (N(CH₂)₃CH₃). Anal. Calcd for OsN₂C₂₀H₄₉: Ć, 47.40; H, 9.55; N, 5.53. Found: C, 47.21; H, 9.55; N, 5.46.

Preparation of [NOsMe₄·AlMe₃][NBu₄]. [NOs(OSiMe₃)₄][NBu₄] (0.339 g, 0.452 mmol) was dissolved in 15 mL of toluene. The solution was cooled to -78 °C. With magnetic stirring, a toluene solution of AlMe3 (5.0 mmol in 10 mL) was added dropwise. The solution was slowly warmed to 25 °C. Solvent and excess AlMe3 were removed in vacuo. The residue was crystallized from ether/pentane solution at -30 °C. Orange crystals of [NOsMe₄·AlMe₃][NBu₄] (0.225 g, 86%) were obtained: ¹H NMR (C_6D_6 , 200 MHz, 298 K) 2.85 (br s, NCH₂ and OsCH₃, 17 H), 2.35 (br s, 3 H, CH₃), 1.6 (m, 16 H, NCH₂CH₂CH₂CH₃), 1.40 (m, 12 H, NCH₂CH₂CH₂CH₃), -0.05 ppm (br s, 9 H, AlMe₃).

Preparation of [NOsMe4][NBu4] from [NOsMe4·AlMe3][NBu4]. In a vial, [NOsMe₄·AlMe₃][NBu₄] (0.10 g, 0.17 mmol) was dissolved in 3 mL of toluene. Excess TMEDA (0.5 mL) was added. The color of the solution immediately changed from orange to yellow. Yellow needles formed on standing. Additional yellow crystals were obtained by doubling the volume with pentane and cooling the mixture to -30 °C. Yield of pure [NOsMe₄][NBu₄] was 0.075 g (87%).

 $\label{eq:preparation of NOsMe_3(THF)_2. [NOsCl_3][NBu_4] (1.70 g, 3.04 mmol) was dissolved in 75 mL of THF in a 200-mL flask equipped with$ a stir bar, dropping funnel, and N₂(g) inlet. The solution was cooled to -78 °C, and MeMgI (15.4 mmol) in 30 mL of ether was added slowly by means of the addition funnel. White precipitate formed, and the color of the solution changed from purple to yellow. The mixture was warmed to room temperature and filtered. Solvent was removed from the filtrate under vacuum. The residue was crystallized from toluene/pentane solution at -30 °C: yield, 1.10 g (92%) yellow solid; IR (Nujol mull) ν_{Os-N} 1025 cm⁻¹; ¹H NMR (C₆D₆, 200 MHz, 297 K) 3.55 (m, 2 H, THF), 2.167 (s, 3 H, OsMe), 1.36 ppm (m, 2 H, THF). Anal. Calcd for OsNO₂C₁₁H₂₅: C, 33.57; H, 6.40; N, 3.56. Found: C, 33.01; H, 6.75; N, 3.38.

Preparation of NOsMe₃(TMEDA). NOsMe₃(THF)₂ (0.040 g, 0.10 mmol) was dissolved in 0.5 mL of acetonitrile. TMEDA (0.20 mL, 0.15 mmol) was added by microliter syringe. Yellow crystals formed on standing. Approximately 1.5 mL of diethyl ether was added, and the mixture was cooled. The solution was decanted, and the yellow crystals were washed with diether ether and dried under vacuum: yield 0.036 g (98%); IR (KBr) 1110 cm⁻¹; ¹H NMR (CD₃CN, 200 MHz, 297 K) 2.12 (s, 6 H, NMe), 2.09 (s, 6 H, NMe), 1.94 (s, 3 H, OsMe), 1.88 (s, 6 H, OsMe), 1.74, (s), 1.69, (s), 2.2 (m), 1.8 (m, NH₂). Anal. Calcd for OsN₃C₉H₂₅: C, 29.57; H, 6.89; N, 11.49. Found: C, 30.94; H, 7.18; N, 10.61.

Procedure for Thermal Decomposition Reactions of [NOsR4][NBu4]. A sample of [NOsR₄][NBu₄] (10 mg) was added to a thick-walled NMR tube. The NMR tube was connected, through an adaptor, to the vacuum line. An appropriate NMR solvent, C₆D₆ or CD₃C₆D₅, was condensed into the tube, and the tube was sealed with a flame under vacuum. An initial NMR spectrum was obtained. The tube was heated in an oil bath to 90 °C. NMR spectra were obtained periodically.

Reaction of [NOsR4]NBu4] with PMe3, PBr3, or TMEDA. The same procedure was followed as for the thermal decomposition reactions, except that a known quantity of ligand (PMe₃, PBr₃, or TMEDA) was condensed in along with the NMR solvent.

Reaction of [NOsR4][NBu4] with CO and H2. To a moderate pressure glass reaction vessel was added 20 mg of [NOsR4][NBu4], a stir bar, and 5 mL of toluene. The vessel was pressurized to 30-40 psi with either CO or H₂. The solution was magnetically stirred for 2 days. Solution was analyzed by gas chromatography. NMR spectra were obtained of the osmium-containing products.

Acknowledgment. We gratefully acknowledge the financial support of the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corp., and the University of Illinois at Chicago Research Board.

Reactions of Polyfluoroalkyl Fluorosulfates with Nucleophiles: An Unusual Substitution at the Sulfur-Fluorine Bond

Scott A. Kinkead, Ramesh C. Kumar,¹ and Jean'ne M. Shreeve*

Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843. Received April 9, 1984

Abstract: Polyfluoroalkyl fluorosulfates $R_f OSO_3F$ [$R_f = CF_3CH_2$ and $(CF_3)_2CH$] react with amines and alcohols or alkoxides to yield new polyfluoroalkyl sulfamates and dialkyl sulfate esters, respectively. Unlike both perfluoroalkyl fluorosulfates and alkyl fluorosulfates, the sulfur-oxygen bond in these polyfluoroalkyl fluorosulfates remains intact in the presence of hard nucleophiles. With methanethiol, however, nucleophilic attack occurs primarily at the α -carbon of CF₃CH₂OSO₂F to give methyl 2,2,2-trifluoroethyl sulfide.

In the past, the reaction chemistry of fluorosulfate esters has been limited to the formation of ketones and acyl derivatives due

to the easy scission of the sulfur-oxygen bond, e.g.,² eq 1. Nu- $CF_{3}CFBrCF(OSO_{2}F)CF_{3} \xrightarrow{C_{3}F} CF_{3}CFBrC(O)CF_{3} + SO_{2}F_{2} (1)$

cleophiles, such as F-, predictably attack the hard sulfur(VI) atom,

⁽¹⁾ PRF Summer Faculty Research Participant. On leave from Department of Chemistry, Baldwin-Wallace College, Berea, OH.

Ω

Table I. Yield of Sulfate Esters and Sulfamates from 2,2,2-Trifluoroethyl Fluorosulfate

nucleophile	yield, %	nucleophile	yield, %
HN(CH ₃),	>96	HOCH ₂ CF ₃	87
NH ₂ CH ₃	58	$HOCH(CF_3)_2$	94
NH ₃	50	-OCH3	56

cleave the S-O bond to eliminate SO₂FNu and fluoride ion to give the observed products (eq 2). Perfluoroalkyl chlorosulfates

often behave in an analogous fashion. For example, with ammonia, fluoroalkyl chlorosulfates react to give fluoroalkyl amides and sulfamide (eq 3 annd 4).³

$$CF_{3}CF_{2}CF_{2}OSO_{2}Cl + 3NH_{3} \rightarrow \\ [CF_{3}CF_{2}CF_{2}OH] + (NH_{2})_{2}SO_{2} + NH_{4}Cl (3)$$

$$[CF_{3}CF_{2}CF_{2}OH] \xrightarrow{-HF} CF_{3}CF_{2}C(O)F \xrightarrow{NH_{3}} CF_{3}CF_{2}C(O)NH_{2}$$
(4)

We recently reported the convenient syntheses of alkyl and polyfluoroalkyl fluorosulfates from sulfites, which provided us an opportunity to examine the reaction of fluorosulfates such as CF₃CH₂OSO₂F with nucleophiles.⁴ To our surprise and in sharp contrast with the reactions of alkyl or perfluoroalkyl fluorosulfates with nucleophiles described in the literature, we have discovered a facile synthesis of new sulfamates and dialkyl sulfate esters. In our studies of 2.2.2-trifluoroethyl fluorosulfate and hexafluoroisopropyl fluorosulfate with amines and alcohols, nucleophilic attack occurred at the sulfur-fluorine bond with fluorine as the leaving species to form new sulfur-nitrogen or new sulfur-oxygen bonds. Little or no attack occurred at the carbon of the polyfluoroalkyl group or at the sulfur that would have resulted in cleavage of the sulfur-oxygen bond. However, with sulfides or bromide ion attack occurred at the methylene carbon of CF₃C- H_2OSO_2F perhaps arising from the sensitivity of the carbon α to the fluorosulfate group to attack by soft nucleophiles. This latter reaction presumably involved the formation of unknown mono- or bis(thiosulfate) esters, RfOSO2SR or RSSO2SR, which underwent decomposition to SO₂ and disulfanes, in addition to CF_3CH_2R . With Br^- , CF_3CH_2Br is formed quantitatively.

Results and Discussion

Usually the reactions of fluorosulfates and chlorosulfates with nucleophiles involved three types of products. First, and most predominantly, perfluoroalkyl fluorosulfates react with nucleophiles to give the products of sulfur-oxygen bond cleavage (eq 5).^{3,5-8}

 $Y_2SO_2 + HX(X^-)$ (5)

X=F, CI: YH=H₂O, ROH, HNRR'; Y" . F", OH"

- (2) Earl, B. L.; Hill, B. K.; Shreeve, J. M. Inorg. Chem. 1966, 5, 2184.
 (3) Hauptschein, M.; Braid, M. J. Am. Chem. Soc. 1961, 83, 2500.
 (4) Kumar, R. C.; Kinkead, S. A.; Shreeve, J. M. Inorg. Chem. 1984, 23,
- 3112 (5) Hauptschein, M.; Braid, M. J. Am. Chem. Soc. 1961, 83, 2505.

 - (6) Lustig, M.; Ruff, J. K. Inorg. Chem. 1964, 3, 287.
 (7) Schack, C. J.; Christe, K. O Inorg. Nucl. Chem. Lett. 1978, 14, 293.
 (8) Ruff, J. K.; Merritt, R. F. Inorg. Chem. 1968, 7, 1219.

$$CF_{3}CH_{2}OSF + :YH \longrightarrow CF_{3}CH_{2}OH + YSO_{2}F$$

$$\| 0$$

$$CF_{3}CH_{2}OH + CF_{3}CH_{2}OSO_{2}F \xrightarrow{B} (CF_{3}CH_{2}O)_{2}SO_{2}$$

$$YSO_{2}F + YH \xrightarrow{-HF} Y_{2}SO_{2}$$

 $Y = H_2NCH_3$. HOCH(CF₃)₂ · NEt₃, NaOCH₃; B= Et₃N, H₂NCH₃

A much less prevalent reaction is the formation of sulfate ester derivatives ("in small yields") via rupture of the sulfur-fluorine or sulfur-chlorine bond (eq 6).9,10

X=CI, F; Y=N(CH₃)₂. N(C₂H₅)₂; R=CH₃, C₂H₅, n-C₃H₇, n-C₄H₉

Finally, nucleophiles can attack chlorosulfates at the α -carbon to give ethers, alcohols, and alkyl halides (eq 7).^{11,12} This reaction

$$RCH_2OSCI + Y^- \longrightarrow RCH_2Y + CI^- + [SO_3]$$
(7)

R=H, CH3; Y=m-CH3OC6H4OT, CIT, CH3OT, HOT

may proceed either by direct displacement at carbon or first by dissociation of the S-Cl bond followed by attack at the carbon. In the latter case, pyridine reacts with n-alkyl chlorosulfates to give alkyl chlorides (eq 8).13

$$n \cdot \text{BuOSO}_2\text{Cl} + \text{C}_5\text{H}_5\text{N} \xrightarrow{-80^{\circ}\text{C}} \\ \text{Cl}^- + [n \cdot \text{BuOSO}_5 \cdot \text{NC}_5\text{H}_5]^+ \rightarrow n \cdot \text{BuCl} + \text{C}_5\text{H}_5\text{NSO}_3 (8)$$

Buncel and others¹⁴ have examined the relative occurrence of these three reactions to determine the factors governing selection of each mode of attack. In dealing with attack at the sulfur, the products formed appear to be the result of the better leaving group being cleaved from the sulfur. With perfluoroalkyl fluorosulfates, for example, the perfluoroalkoxy group is a better leaving group than F-, while in alkyl chlorosulfates, Cl⁻ can be a better leaving group than RO⁻. More subtle factors appear to be operating in the instance of attack at the α -carbon. Cohen¹⁵ observed that long chain fluoroalkyl chlorosulfates apparently possess weaker fluoroalkyl-oxygen bonds than the corresponding p-toluenesulfonates because of the easy occurrence of reaction 9. The yields in this reaction were in the order Br > Cl > F, indicating that the α -carbon reacted more easily with "soft" nucleophiles such as Br^- (and presumably I⁻).

$$R_f OSO_2 Cl + MX \rightarrow R_f X + MOSO_2 Cl$$
 (9)

$$R_{f} = H(CF_{2}CF_{2})_{2}CH_{2}, HCF_{2}CF_{2}CH_{2}; M = Li, K; X = F, Cl, Br$$

In our reactions of 2,2,2-trifluoroethyl fluorosulfate, hard nucleophiles such as HNRR' or HOR gave rise almost exclusively

(15) Cohen, W. V. J. Org. Chem. 1961, 26, 4021.

⁽⁹⁾ Delepine, M.; Demars, R. Bull. Sci. Pharmacol. 1923, 30, 577.
(10) Binkley, W. W.; Degering, E. F. J. Am. Chem. Soc. 1939, 61, 3250.
(11) Guyot, J.; Simon, L.-J. C. R. Hebd Seances Acad. Sci. 1920, 170, 326.
(12) Hall, H. K. J. Am. Chem. Soc. 1956, 78, 1450.

⁽¹³⁾ Charalambous, J.; Frazer, M. J.; Gerrard, W. J. Chem. Soc. 1964, 5480.

⁽¹⁴⁾ Buncel, E. Chem. Rev. 1970, 70, 323 and references therein.

to sulfur-fluorine bond cleavage (eq 10 and 11). The yields in

$$CF_{3}CH_{2}OSO_{2}F + 2HNRR' \xrightarrow{25 \circ C} CF_{3}CH_{2}OSO_{2}NRR' + [H_{2}NRR']^{+}F^{-} (10)$$

$$R = H, CH_{3}; R' = H, CH_{3}$$

$$CF_{3}CH_{2}OSO_{2}F + ROH \xrightarrow{Et_{3}N}$$

$$CF_{3}CH_{2}OSO_{2}OR + [Et_{3}NH]^{+}F^{-} (R = CF_{3}CH_{2}, (CF_{3})_{2}CH, CH_{3}$$

(11)

each case (Table I) reflect the relative strength of the nucleophiles. Reactions of alcohols with fluorosulfates occurred in low yields or not at all unless the alcohol was first mixed with triethylamine which indicated that the anion is the actual attacking species. Yields of methyl 2,2,2-trifluoroethyl sulfate were low by this method, necessitating the use of sodium methoxide to effect reasonable yields.

In several syntheses of $CF_3CH_2OSO_2R$ (where $R = OCH_3$, NHCH₃, and OCH(CF₃)₂), trace amounts of the bis(trifluoroethyl) sulfate were identified by GC/MS. Presumably this sulfate must arise from rupture of the S-O single bond instead of the S-F bond (Scheme I). The small amounts of bis(trifluoroethyl) sulfate from these reactions (less than 1-2%) indicate the poor leaving ability of the trifluoroethoxy group compared to other perfluoroalkoxy groups.^{3,5}

Because of the strong interaction between $(CF_3)_2$ CHOH and triethylamine, the yield of $CF_3CH_2OSO_2OCH(CF_3)_2$ was low unless the mixture was heated to 50-60 °C for several hours.

When hexafluoro-2-propanol-triethylamine mixtures were allowed to react with sulfuryl chlorofluoride (SO₂ClF), bis(hexafluoroisopropyl) sulfate [[(CF₃)₂CHO]₂SO₂] was isolated in 20% yield in addition to hexafluoroisopropyl fluorosulfate [(CF₃)₂C-HOSO₂F].⁴ Formation of the sulfate ester must result from the reaction of the alcohol-amine adduct with the fluorosulfate formed in situ (eq 12 and 13).

$$(CF_3)_2CHOH \cdot NEt_3 + SO_2CIF \rightarrow (CF_3)_2CHOSO_2F + [HNEt_3]^+CI^- (12)$$

$$50\%$$

$$(CF_3)_2CHOSO_2F + (CF_3)_2CHOH \cdot NEt_3 \rightarrow [(CF_3)_2CHO]_2SO_2 + [HNEt_3]^+F^- (13)$$
19%

When trifluoroethyl fluorosulfate was allowed to react with methanethiol-triethylamine mixtures, none of the expected S-methyl 2,2,2-trifluoroethyl thiosulfate could be identified. Instead, approximately half of the fluorosulfate remained unreacted, while only a trace of the methanethiol could be found. Among the identified products were sulfur dioxide, dimethyldisulfane (C-H₃SSCH₃), trifluoroethanol (as the triethylamine adduct), bis(trifluoroethyl) sulfate, and a large quantity of methyl trifluoroethyl sulfide (CF₃CH₂SCH₃). The sizable amount of sulfide found indicates a shift in the reaction pathway from substitution at sulfur to substitution at the carbon (eq 14). The sulfane, sulfur

$$CF_{3}CH_{2}OSO_{2}F + CH_{3}SH \xrightarrow{Et_{3}N} CF_{3}CH_{2}SCH_{3} + [Et_{3}NH]^{+}[OSO_{2}F]^{-} (14)$$

dioxide, trifluoroethanol, and sulfate can presumably arise from nucleophilic attack at sulfur followed by scission of the sulfuroxygen bond (Scheme II). Since nucleophilic attack at sulfur(VI) by sulfur(-II) is apparently less favored than attack at the α carbon, the amounts of these products will, of course, be less than the sulfide. Although appropriate fragments could be found in the GC/MS for the bis(methanethio)sulfate, its identity could not be confirmed.

Bromide ion is also a sufficiently soft nucleophile to attack the carbon preferentially.¹⁵ While KF was observed to be unreactive with trifluoroethyl fluorosulfate at 60 °C, KBr converted the fluorosulfate into trifluoroethyl bromide quantitatively (eq 15). Because no evidence for sulfuryl bromofluoride (SO₂BrF) or its

Scheme II $CF_3CH_2OSO_2F + CH_3SH \longrightarrow CF_3CH_2OH + CH_3SSO_2F$ $CH_3SSO_2F + CH_3SH \xrightarrow{-HF} [(CH_3S)_2SO_2] \longrightarrow CH_3SSCH_3 + SO_2$

$$CF_3CH_2OH + CF_3CH_2OSO_2F \xrightarrow{CTN} (CF_3CH_2O)_2SO_2$$

decomposition products could be found, attack apparently does not occur at sulfur(VI).

$$CF_{3}CH_{2}OSF + KBr \xrightarrow{C_{2}H_{4}(OH)_{2}, 60 \text{ °C}, 12 \text{ h}}_{O} CF_{3}CH_{2}Br (>98\%) (15)$$

A shift in the point of attack of nucleophiles within a molecule such as this, while unusual, is not without precedent. Burton and Shreeve¹⁶ reported the reaction of *N*-trifluoromethanesulfenyl acetimidoyl chloride with amines and alcohols to give substitution products at carbon, while with thiols substitution products at sulfur predominate. In their work, the hardness of the nucleophile determined the point of attack. On the basis of existing tables that attempt to classify bases according to hardness and softness,¹⁷ a four-coordinate carbon in the α -position is susceptible to attack by soft nucleophiles. These findings logically reflect the relative polarizability of the extremely electron-deficient sulfur atom relative to the α -carbon atom.

Unlike perfluoroalkyl fluoro- and chlorosulfates, trifluoroethyl fluorosulfate is remarkably stable to hydrolysis. The ¹⁹F and ¹H NMR spectra were essentially unchanged even after 48 h at 125 °C in the presence of an excess of water. Although hydrolysis did eventually occur, even after 2 months at room temperature in an excess of water 78% of the fluorosulfate was unreacted, while the remainder had been converted to the alcohol CF₃CH₂OH. No evidence for the acid hydrogen sulfate HOSO₂OCH₂CF₃ was obtained.

The sulfamates prepared in this study are colorless, air- and water-stable liquids and solids with very low vapor pressures. While N,N-dimethyl-2,2,2-trifluoroethyl sulfamate [CF₃CH₂O-SO₂N(CH₃)₂] is a liquid (vapor pressure at room temperature of ~1 mm) that is not miscible with water in any proportion, 2,2,2-trifluoroethyl sulfamate (CF₃CH₂OSO₂NH₂) is a solid (mp 50 °C) that is quite water soluble. The effect of intermolecular hydrogen bonding between the protons on the nitrogen atom and the oxygen atoms on sulfur in CF₃CH₂OSO₂NH₂ account for the increase in melting point and solubility in water.

All of the dialkyl sulfate esters are involatile liquids, insensitive to both air and water. Bis(2,2,2-trifluoroethyl) sulfate has been prepared previously in low yields from sodium trifluoroethoxide and SO₂Cl₂.¹⁵ In these sulfamates and sulfate esters, all NMR spectra are first order. No long-range coupling between different groups attached to sulfur is observed. Although the CF₃ groups in bis(hexafluoroisopropyl) sulfite [[(CF₃)₂CHO]₂SO] are coupled to each other with ${}^{4}J_{CF_{3}-CF_{3}'} = 9.5$ Hz, ¹⁸ no such coupling could be observed in bis(hexafluoroisopropyl) sulfate [[(CF₃)₂CH-O]₂SO₂].

While the value of ${}^{3}J_{\rm HF}$ for the trifluoroethyl group varied only slightly from 7.3 to 8.1 Hz, for all the sulfamates and sulfates, the value of ${}^{3}J_{\rm HF}$ for methyl trifluoroethyl sulfide has increased to approximately 10 Hz. Even though the mass spectra of all the sulfamates displayed molecular ions with electron-impact ionization, molecular ions were weak or absent for the sulfates. When chemical ionization was used, however, the quasi-molecular ions (M + 1) were intense and often the base peaks. Typically, major peaks were observed corresponding to CF₃CH₂OSO₂⁺ (163), ROSO₂⁺ (M - CF₃CH₂O), and CF₃CH₂⁺ (83). The infrared spectra of these compounds showed strong absorption bands for

⁽¹⁶⁾ Burton, C. A.; Shreeve, J. M. Inorg. Chem. 1977, 16, 1408.

⁽¹⁷⁾ Pearson, R. G.; Songstad, J. J. Am. Chem. Soc. 1967, 89, 1827.
(18) De Marco, R. A.; Kovacina, T. A.; Fox, W. B. J. Fluorine Chem.
1975, 5, 221.

Reactions of Polyfluoroalkyl Fluorosulfates

 $\nu_{S=O_{asym}}$ at 1370-1410 cm⁻¹ and $\nu_{S=O_{sym}}$ at about 1280 cm⁻¹.

Experimental Section

Materials. 2,2,2-Trifluoroethyl fluorosulfate,4 NaOCH₃,19 and SO₂-ClF²⁰ were prepared according to the literature procedures. The other materials CF3CH2OH (Aldrich), (CF3)2CHOH (PCR), NH3 (Matheson), CH₃NH₂ (Matheson), (CH₃)₂NH (Matheson), and CH₃SH (Eastman Organic) were used as received without further purification. Triethylamine (Baker) was distilled from KOH and stored over activated 3-Å molecular sieves for 18 h prior to use.

General Procedures. Gases and volatile liquids were handled in a conventional Pyrex glass vacuum apparatus equipped with a Heise Bourdon tube gauge. Most of the starting materials were measured quantitatively by using PVT techniques. Products were first separated from unreacted starting materials by fractional condensation (trap-to-trap distillation), followed, where necessary, by vacuum bulb-to-bulb distillation and by use of a Hewlett-Packard 5712 A gas chromatograph. For gas chromatographic separations, the columns were fashioned from 0.25-in. copper tubing packed with 30% QF-1 on Chromosorb P. Infrared spectra were recorded with a Perkin-Elmer 599B spectrometer using a 10-cm cell fitted with KBr windows for gases, a capillary film between AgCl windows for liquids, and a KBr pellet for solids. ¹⁹F and ¹H NMR spectra were obtained on either a JEOL FX 90Q FT NMR or a Varian EM360L spectrometer using CCl₃F and tetramethylsilane as an external reference, respectively. CDCl₃ was used as a solvent. Signals upfield of CCl₃F in the ¹⁹F NMR are assigned negative values. Mass spectra were recorded with a VG 7070 HS spectrometer operating either at 15 eV or in the chemical ionization mode. Elemental analyses were performed by Beller Mikronanalytisches Laboratorium, Göttingen, West Germany.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with Dimethylamine [(CH₁)₂NH]. A 50-mL Pyrex flask fitted with a vacuum stopcock was charged with 2.0 mmol (0.36 g) of CF₃CH₂OSO₂F and 4.0 mmol (0.18 g) of (CH₃)₂NH at -196 °C, and then warmed slowly to room temperature over a period of several hours. The volatile products were distilled through traps held at -30 and -196 °C, while the reaction vessel was warmed from -196 to +40 °C. In addition to unreacted (CH₃)₂NH (0.1 mmol) in the -196 °C, the trap at -30 °C contained 0.3960 g (96% yield) of a colorless liquid with a vapor pressure of 1 mm at 23 °C. Chromatographic analysis (0.25 in. × 50 cm QF-1 column at 90 °C) showed the liquid to be greater than 98% pure CF₃CH₂OSO₂N(CH₃)₂. The infrared spectrum of N,N-dimethyl-2,2,2-trifluoroethyl sulfamate, taken as a capillary film between AgCl plates, is as follows: 2927 (m-br), 1464 (m), 1423 (m), 1377 (s), 1287 (s), 1183 (vs), 1058 (s), 978 (s), 868 (m), 808 (s-br), 734 (m), 668 (w), 569 (s), 543 (m) cm⁻¹. The room temperature ¹⁹F NMR spectrum shows a triplet at ϕ -74.7 with ³J_{HF} = 8.1 Hz. In the ¹H NMR, two signals are observed, a quartet due to CH_2 at δ 4.66 (2 H), and a singlet at δ 3.06 (6 H) due to the two methyl groups on the nitrogen atom. The electron-impact mass spectrum shows an intense molecular ion at m/e 207 (52% of base peak), in addition to peaks at m/e208 (M + 1, 5.5%), 209 (M + 2, 2.7%), and 206 (M - 1, 43.3%). Other fragments are found at m/e 163 (M - N(CH₃)₂⁺, 1%), 124 (M -CF3CH2+, 9.4%), 108 (M - CF3CH2O+, base peak), and 83 (CF3CH2+ 4.3%). This compound is a colorless, air-stable liquid which is soluble in CH₂Cl₂ and insoluble in water. The ¹H NMR of an equal volume mixture of sulfamate and water shows no change over a period of 2 weeks at room temperature. Anal. Calcd for C₄H₈NF₃O₃S: C, 23.18; H, 3.86; F, 27.53. Found: C, 24.09; H, 3.98; F, 28.30.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with Methylamine (CH₃NH₂). 2,2,2-Trifluoroethyl fluorosulfate (1 mmol, 0.18 g) and methylamine (2 mmol, 0.09 g) were condensed into a Pyrex reaction vessel at -196 °C. The contents were slowly warmed to room temperature and kept for 20 h. All the volatiles were removed under vacuum while the reaction mixture was kept at 0 °C. The product CF₃CH₂OS-O₂NHCH₃ was separated from CH₃NH₃+F⁻ by vacuum distillation at 43 °C. N-Methyl-2,2,2-trifluoroethyl sulfamate is obtained as a colorless liquid in 58% yield and has a vapor pressure at room temperature of 1 mm. The infrared spectrum of CF₃CH₂OSO₂NHCH₃ is as follows: 3312 (m-br), 2980 (w), 1460 (sh), 1420 (m), 1360 (m-s), 1285 (s), 1170–1190 (s-br), 1050 (s), 970 (s), 860 (m), 815 (m), 680 (m), 565 and 580 (m), 520 (w) cm⁻¹. The ¹⁹F NMR consists of a triplet at ϕ –73.8 with ³J_{HF} = 8 Hz. The ¹H NMR is comprised of a broad singlet at δ 5.6 (1 H), a quartet at δ 4.34 (2 H), and a singlet at δ 2.8 (3 H). The EI mass spectrum contained a molecular ion, m/e 193 (11.5% of base peak), as well as fragments at m/e 124 (M - CF₃⁺, 10.7%), 94 (M -CF₃CH₂O⁺, base peak), and 83 (CF₃CH₂⁺, 5.5%).

Anal. Calcd for C3H6NF3O3S: C, 18.65; H, 3.11; F, 29.5. Found: C, 18.81; H, 3.49; F, 28.6.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with Ammonia. 2,2,2-Trifluoroethyl fluorosulfate (2 mmol, 0.36 g) and ammonia (8 mmol, 0.14 g) were condensed in a Pyrex reaction vessel at -196 °C and warmed slowly to room temperature, whereupon a white solid was observed to form. After the unreacted starting materials were removed under vacuum at 0 °C, the white solid was vacuum sublimed at 45 °C. The hygroscopic white platelets melt at 50-51 °C when dry and are insoluble in chloroform or methylene chloride but dissolve readily in water, methanol, or acetone. The infrared spectrum, taken as a KBr disk, is as follows: 3380 (m), 3170 (m), 3100 (w-br), 2980 (sh), 1605 (sh), 1525 (s), 1360 (s), 1304 (m), 1273 (m), 1174 (vs), 1049 (s), 966 (s), 939 (m), 855 (m), 819 (m-br), 670 (m), 583 (m), 549 (s), 505 (w) cm⁻¹. The ¹⁹F NMR, taken in methanol, consists of a triplet at ϕ -75.2, with a value for ${}^{3}J_{\text{HF}}$ of 7.3 Hz. The ¹H NMR taken in 80:20 CDCl₃/(CD₃)₂CO consists of a quartet at δ 4.47 (2 H) and a broad singlet at δ 2.12 (2 H), the latter chemical shift being strongly solvent dependent. The chemical ionization mass spectrum shows an intense quasi-molecular ion at m/e180 (M + 1, base peak). Other fragments are observed at m/e 160 (M - F⁺, 56.7%), 140 (CFCH₂OSO₂NH⁺, 18.2%), 110 (M - CF₃⁺, 29.9%), and 80 (M – $CF_3CH_2O^+$, 66.4%).

Anal. Calcd for C₂H₄NF₃O₃S: C, 13.40; H, 2.23; F, 31.83. Found: C, 12.82; H, 3.21; F, 32.8.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with 2,2,2-Trifluoroethanol (CF₃CH₂OH). 2,2,2-Trifluoroethanol (2 mmol, 0.20 g) and triethylamine (2 mmol, 0.20 g) were condensed in a Pyrex reaction vessel and warmed to ambient temperature. After being stirred vigorously for 10 minutes, the mixture was cooled to -196 °C, 2,2,2-trifluoroethyl fluorosulfate (2 mmol, 0.36 g) was added, and the mixture was allowed to warm to room temperature over several hours. The volatile products and unreacted starting materials were removed under vacuum at -30 °C, and the product was vacuum distilled at 38 °C. Bis(2,2,2-trifluoroethyl)sulfate [(CF₃CH₂O)₂SO₂] is a colorless liquid with a vapor pressure of about 1 mm at room temperature. Yield of the sulfate ester by gas chromatography (50-cm QF-1 column at 120 °C, retention time = min) was 87%. The infrared spectrum of the material is as follows: 2992 (w), 1412 (vs-br), 1288 (vs), 1178 (vs-br), 1028 (s), 973 (s), 883 (vs), 847 (s), 676 (m), 584 (s), 529 (w) cm⁻¹. The ¹⁹F NMR consists of a triplet at ϕ -76.6 with ${}^{3}J_{HF}$ = 7.8 Hz. The ${}^{1}H$ NMR is comprised of a quartet at δ 4.5. The CI mass spectrum shows a quasi-molecular ion at m/e 263 (M + 1, base peak) with other prominent fragments at m/e 243 $(M - F^+, 64.6\%), 163 (M - CF_3CH_2O^+, 6.3\%), 101 (CF_3CH_2OH_2^+, 101 (CF_3CH_2^+, 101$ 20.8%), 83 (CF₃CH₂⁺, 12.9%) and 81 (HSO₃⁺ or CF₃C⁺, 90.9%)

Anal. Calcd for C₄H₄F₆O₄S: C, 18.32; H, 1.53; F, 43.5. Found: C, 18.69; H, 1.69; F, 43.4%.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with Sodium Methoxide (NaOCH₃). A Pyrex reaction vessel was charged with sodium methoxide (3.0 mmol, 0.16 g), and at -196 °C, 2,2,2-trifluoroethyl fluorosulfate (2.6 mmol, 0.47 g) was used. After the reaction vessel had warmed at room temperature, the volatiles, which consisted of 0.5 mmol unreacted fluorosulfate, were removed under vacuum at -30 °C. The remainder of the material was vacuum distilled at 35 °C and consisted of 0.2289 g (56% yield) of methyl 2,2,2-trifluoroethyl sulfate. The material, which had a purity of >95% by gas chromatography (50 cm QF-1 at 90 °C, retention time = 7.5 min), has 2-mm vapor pressure at room temperature. The infrared spectrum of the material is as follows: 2978 (w), 1458 (m), 1420 (vs), 1292 (vs), 1197 (vs-br), 1062 (s), 1007 (s), 976 (m), 881 (s), 851 (s), 799 (m), 677 (m), 583 (s), 526 (w) cm⁻¹. The ¹⁹F NMR of the liquid consists of a triplet at ϕ -73.2, with a value for ${}^{3}J_{\rm HF}$ = 7.88 Hz. The ¹H NMR is comprised of a quartet at δ 4.46 (2 H) and a singlet at δ 3.99 (3 H) for the methoxy group. The CI mass spectrum shows a quasimolecular ion at m/e 195 that is also the base peak. Other fragments of prominence are at m/e 175 (M - F⁺, 37.3%), 125 (M - CF₃⁺, 5.0%), and 95 (M - CF₃CH₂O⁺, 8.7%).

Anal. Calcd for C3H5F3O4S: C, 18.55; H, 2.58; F, 29.4. Found: C, 19.43; H, 2.66; F, 29.2.

Reaction of 1,1,1,3,3,3-Hexafluoro-2-propanol [(CF₃)₂CHOH] with SO₂ClF. Hexafluoro-2-propanol (1 mmol, 0.17 g), and triethylamine (1 mmol, 0.10 g) were condensed into a 50-mL Pyrex reaction vessel equipped with a Teflon/glass stopcock at -196 °C and warmed to room temperature for 20 min. The mixture was cooled to -196 °C, and SO₂ClF (1 mmol, 0.12 g) was added to the reactor, whereupon the vessel was warmed to room temperature. After about 20 h, the mixture was distilled, and in addition to (CF₃)₂CHOSO₂F⁴ found in the trap at -78 °C, the trap held at -20 °C contained a new sulfate, [(CF₃)₂CHO]₂SO₂, in about 20% yield. This new sulfate has infrared bands at 2990 (w), In about 2007 (26), 1305 (c), 1255 (vs-br), 1123 (sh), 1065 (s), 896 (s), 882 (s), 700 (s), 615 (s), and 544 (m) cm⁻¹. The ¹⁹F NMR shows a doublet centered at ϕ -76.2, with ³J_{HF} = 6.1 Hz. The ¹H NMR shows

⁽¹⁹⁾ Fieser, L. F.; Fieser, M. "Reagents for Organic Synthesis"; John Wiley: New York, 1967; Vol. 1, p 1091.
(20) Tullock, C. W.; Coffman, D. D. J. Org. Chem. 1960, 25, 2016.

a heptet at δ 4.30. The highest fragment observed in the EI mass spectrum is M - F⁺ at m/e 379.

Anal. Calcd for [(CF₃)₂CHO]₂SO₂: S, 8.05; F, 57.28. Found: S, 8.15; F, 58.0.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with 1,1,1,3,3,3-Hexa**fluoro-2-propanol** [(CF₃)₂CHOH]. 1,1,1,3,3,3-Hexafluoro-2-propanol (2 mmol, 0.34 g) and triethylamine (2 mmol, 0.20 g) were condensed in a Pyrex reaction vessel at -196 °C and warmed to room temperature for 20 min. The mixture was then frozen at -196 °C and 2,2,2-trifluoroethyl fluorosulfate (2 mmol, 0.36 g) added, whereupon the mixture was warmed slowly to room temperature with stirring. After the mixture was heated to 60 °C with stirring for 2-3 h, the volatiles were removed at -30 °C. The product, a colorless to pale yellow liquid, was analyzed by gas chromatography-mass spectroscopy and found to be 93.4% CF₃CH₂O-SO₂OCH(CF₃)₂, 4.0% unreacted (CF₃)₂CHOH·N(CH₂CH₃)₃ (eluted at 120 °C as one component), and 2.6% (CF₃CH₂O)₂SO₂. The vapor pressure of 1,1,1,3,3,3-hexafluoroisopropyl 2,2,2-trifluoroethyl sulfate is approximately 5 mm at room temperature. The infrared spectrum for this new sulfate is as follows: 2980 (w), 1441 (s), 1370 (s), 1297 (vs), 1212 (vs-br), 1112 (m), 1069 (s), 1038 (vs), 970 (s), 911 (sh), 893 (s), 854 (s), 746 (w), 698 (s), 673 (w), 624 (m), 597 (m), 576 (m), 539 (m) cm⁻¹. The ¹⁹F NMR shows a doublet centered at ϕ -75.2 (³J_{HF} = 5.4 Hz, 6 F), and a triplet at ϕ -76.0 (³J = 7.3 Hz, 3 F). The ¹H NMR consists of a heptet at δ 5.23 (1 H) and a guartet at δ 4.62 (2 H). The CI mass spectrum shows a quasi-molecular ion at m/e 331 (base peak), as well as prominent fragments at m/e 311 (M - F⁺, 88.6%), 231 (M - CF₃CH₂⁺, 8.1%), 211 (M - C₂H₂F₃⁺, 6.9%), 163 (M - (CF₃)₂CHO⁺, 10.9%), 101 (CF₃CH₂OH₂⁺, 12%), 81 (CF₃C⁺, 36.9%), and 69 (CF₃⁺, 16%).

Anal. Calcd for C₅H₃F₉O₄S: C, 18.18; H, 0.91; F, 51.8. Found: C, 19.19; H, 1.19; F, 53.7.

Reaction of 2,2,2-Trifluoroethyl Fluorosulfate with Methanethiol (CH₃SH). A Pyrex reaction vessel was charged with CH₃SH (4 mmol, 0.20 g), triethylamine (2 mmol, 0.20 g), and 2,2,2-trifluoroethyl fluoro

sulfate (2 mmol, 0.36 g), at -196 °C, and warmed slowly with stirring, to room temperature. Immediately, the volatile products were removed at 0 °C, and the volatile and involatile products were analyzed by GC/MS. In addition to unreacted fluorosulfate (46.6%), trifluoroethanol (as triethylamine adduct, 1.8%), bis(2,2,2--trifluoroethyl) sulfate (trace), SO₂ (6.3%), dimethyldisulfane (14.0%), and methyl 2,2,2-trifluoroethyl sulfide (31.4%) were found. Spectral data for CF₃CH₂SCH₃: ¹⁹F NMR ϕ -68.5 (t, ³J = 9.7 Hz); ¹H NMR δ 3.03 (q, ³J = 9.9 Hz, 2 H), 2.24 (s, 3 H); mass spectrum (CI), m/e 131 (M + 1, 57.6%), 111 (M - F⁺, 100%), 61 (M – CF₃⁺, 10.6%); infrared spectrum 3005 (w, 2950 (w), 1423 (w), 1321 (s), 1288 (s), 1265 (s), 1188 (w), 1142 (vs), 1100 (sh), 992 (w), 861 (w), 752 (m), 658 (m), 497 (w) cm⁻¹. The molecular weight of CF₃CH₂SCH₃ was found to be 132 (calcd 130). When the mixture was allowed to react for approximately 2 days prior to analysis, the amount of bis(2,2,2-trifluoroethyl) sulfate increased to about 10% and the sulfide to about 45% of the mixture with an accompanying decrease in the amount of unreacted fluorosulfate and triethylamine. Trace amounts of a substance of molecular weight 158 were also found in the mass spectrum; however, no compound was isolated.

Acknowledgment is expressed to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to the National Science Foundation (Grant CHE-8100156), and the Air Force Office of Scientific Research (82-0247) for support of this research.

Registry No. $CF_3CH_2OSO_2F$, 66950-71-8; Me_2NH , 124-40-3; $CF_3CH_2OSO_2NMe_2$, 66950-70-7; $MeNH_2$, 74-89-5; $CF_3CH_2OSO_2NHMe$, 92720-78-0; NH_3 , 7664-41-7; $CF_3CH_2OSO_2NH_2$, 92720-79-1; CF_3CH_2OH , 75-89-8; $(CF_3CH_2O)_2SO_2$, 665-97-4; MeONa, 124-41-4; $CF_3CH_2OSO_2OMe$, 92720-80-4; $(CF_3)_2CHOSO_2F$, 38252-04-9; $[(CF_3)_2CHO]_2SO_2$, 92720-81-5; $CF_3CH(OH)CF_3$, 920-66-1; $(CF_3)_2CHOSO_2OCH_2CF_3$, 92720-82-6; MeSH, 74-93-1; CF_3CH_2SMe , 5187-55-3.

Palladium-Catalyzed Carbonylative Coupling of Vinyl Triflates with Organostannanes. A Total Synthesis of $(\pm)\Delta^{9(12)}$ -Capnellene

G. T. Crisp, William J. Scott, and J. K. Stille*

Contribution from the Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523. Received June 11, 1984

Abstract: The palladium-catalyzed carbonylative coupling of vinyl triflates with alkyl-, vinyl-, allyl-, and arylstannanes gives good yields of the cross-coupled ketone products. Regioselectively formed vinyl triflates can be used to produce divinyl ketones as regioisomerically pure compounds. The *E* and *Z* geometry of the vinylstannane is maintained during the coupling reaction. This methodology was applied to a total synthesis of the marine natural product $\Delta^{9(12)}$ -capnellene.

Divinyl ketones are important intermediates in organic synthesis since they can act as Michael acceptors for a diverse range of nucleophiles¹ or participate in Nazarov reactions to give cyclopentenones.² We reported recently that the palladium-catalyzed carbonylative coupling of vinyl ioides with vinylstannanes afforded unsymmetrical divinyl ketones in good yields (eq 1).³

$$R \xrightarrow{I} + R_{3}^{2} sn \xrightarrow{R^{H}} \xrightarrow{P_{d}} CO \xrightarrow{R^{H}} R_{3}^{2} sn I (1)$$

(1) Bergman, E. D.; Ginsburg, D.; Pappo, R. Org. React. 1959, 10, 179-555.

However, an expeditious route for the regioselective generation of a cyclic vinyl iodide is not currently available. For example, cyclic vinyl iodides have traditionally been prepared from the corresponding cycloalkanone via a two-step sequence involving hydrazone formation and subsequent oxidation with iodine in the presence of triethylamine.⁴ This procedure gives only moderate yields of the desired vinyl iodide, the major side product being the geminal diiodide. More recently, a modification of this procedure which significantly increases the yield of the vinyl iodide has been reported.⁵ The regioselective generation of a cyclic vinyl iodide from a hydrazone precursor utilizing this methodology was

⁽²⁾ Santelli-Rouvier, C.; Santelli, M. Synthesis 1983, 429-442.
(3) Goure, W. F.; Wright, M. E.; Davis, P. D.; Labadie, S. S.; Stille, J. K. J. Am. Chem. Soc., in press.

⁽⁴⁾ Pross, A.; Sternhell, S. Aust. J. Chem. 1970, 23, 989-1003.
(5) Barton, D. H. R.; Bashiardes, G.; Fourrey, J.-L. Tetrahedron Lett. 1983, 24, 1605-1608.